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Moskowitz and Rosensweig  [1] desc r ibe  the drag of a magnet ic  l i q u i d -  a colloidal suspen-  
sion of f e r romagne t i c  s ing le -domain  pa r t i c l e s  in a liquid c a r r i e r  - by a ro ta t ing  magnet ic  
field. Var ious  hydrodynamic  models  have been p roposed  [2, 3] to desc r ibe  the m a c r o -  
scopic behav io r  of magnet ic  suspensions .  In the model cons t ruc ted  in [2] it was a s sumed  
that the intensi ty of magnet iza t ion  is  a lways d i rec ted  along the field so that the body torque 
is zero.  There fo re ,  this model cannot account for  the phenomenon under considera t ion.  
We make  a number  of s implifying assumpt ions  to d iscuss  the s teady l amina r  flow of an in-  
c o m p r e s s i b l e  v iscous  magnet izable  liquid with in ternal  rotat ion of pa r t i c l e s  moving in an 
infinitely long cyl indr ical  conta iner  in a rota t ing magnet ic  field. The physical  m e c h a n i s m  
sett ing the liquid in motion is  d i scussed .  The impor tance  of u n s y m m e t r i c  s t r e s s e s  and 
the phenomenon of re laxat ion  of magnet iza t ion  a re  emphas ized .  The solution obtained be-  
low is  a lso  a solution of the p rob l em of the rotat ion of a po la r i zab le  liquid in a rotat ing 
e l ec t r i c  f ield* accord ing  to the model in [3]. 

1. Neglecting e lec t r i ca l  conductivity,  polar izabi l i ty ,  and c ro s s  effects ,  the equations [4] for an i so -  
t he rma l  i ncompres s ib l e  liquid with constant  physica l  p r o p e r t i e s  cons is t  of the momen tum equation (1.1), 

*While this pape r  was in p r e s s  an a r t i c l e  by V. M. Zai tsev  and M.I .  Shliomis [4] on a s i m i l a r  p rob lem was 
published. The main conclusions of the p resen t  pape r  agree  with those of [4]. The pape r s  differ  in the i r  
approach to the descr ip t ion of the drag of a f e r r o m a g n e t i c  suspens ion by a rotat ing field. 

In [4] the p rob lem is solved by using the equations of motion of an i ncompres s ib l e  liquid having an 
in t r ins ic  angular  m om en t um  [5], taking account of the m a c r o s c o p i c  externa l  torque pe r  unit volume.  In gen- 
e ra l ,  this s y s t e m  of equations is  not closed.  For  c losure  it is n e c e s s a r y  f i r s t  to know the magnitude of the 
m a c r o s c o p i c  externa l  torque,  and in [4] it is p roposed  to calculate  this torque by averag ing  the mic roscop i c  
momen t s  acting on each individual par t i c le ;  each specif ic  case  requ i res  specia l  cons idera t ions  [4]. Sec- 
ondly, it is n e c e s s a r y  to use  another  equation, e.g.,  f r o m  the theory  of pa ramagne t i c  re laxat ion,  descr ib ing  
the change of the intensity of magnet iza t ion  with t ime.  

Thus, the method used in [4] to solve the p rob lem of the rota t ion of a f e r romagne t i c  suspension is not 
based  on a pure  hydrodynamic  model  which could be used to desc r ibe  the mechanica l  behav ior  of such l iq-  
uids.  There fo re ,  it is of in te res t  to desc r ibe  the phenomenon in question within the f r a m e w o r k  of a model 
of a magnet izab le  liquid cons t ruc ted  by using the methods of the mechanics  of continuous media  [6]. The 
p re sen t  pape r  is  concerned  with finding just  such a solution. The solution found shows the poss ib i l i ty  of us -  
ing the equations in [3] to account for  the mac roscop i c  behavior  of f e r romagne t i c  suspens ions .  The ex-  
p r e s s i o n s  for  the e l ec t romagne t i c  body torque obtained in [3] and the equation descr ib ing  the change of the 
intensi ty  of magnet iza t ion  with t ime a re  r a t h e r  genera l  and a re  appl icable to a broad  c l a s s  of phys i come-  
chanical  phenomena.  
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the equation for  the internal  rotation of the par t ic les  (1.2), the equation for the magnetization (1.3), and the 
equations of the e lec t rodynamics  of a moving magnetizable medium (1.4): 

pv' = --  Vp + 2~r (Vv) d + %V • (20) -- V • v) + ~orn �9 Vh -- ~0m'x %e -- v x ([10m. V) 6oe -~ pf 

p ---- --  (Oq) ] 8p -1) -[- K-1lxum ~, V. v = 0 

pJto" = %VV. ~ +- 2%V. (Vto) d + 2y3V. (Vto) ~ + 2~ (V • v - -  2(o) + ~0m • ~1 

(1.1) 

(1.2) 

11 - -  K - l m  ---- [~0hl (m" - -  to • m ) ,  II = h - -  v • eoe  ( 1 . 3 )  

V• e-~- OFoh/Ot = - -  Olzom[[Ot -- Y • (~om• v), V.soe = 0 (1.4) 

V x h - - O z o e / O t - = O ,  V-i~oh ----- -- V.l~om 

Here p is the m a s s  density, v is the velocity, t0is the angular velocit ies of the par t ic les ,  p is the hy-  
drostat ic  p re s su re ,  J is the average value of the moment of inert ia of a unis mass ,  m is the intensity of 
magnetization,  e and h are  the e lec t r ic  and magnetic field intensit ies,  e 0 and #0 are the permit t ivi ty and 
permeabi l i ty  of vacuum, Vis  the de1 operator ,  go is the free energy, f is the body force,  cr 2 is a viscosi ty  
coefficient, a 3 is the coefficient of rotational v iscos i ty  charac ter iz ing  the contribution of the unsymmetr ica l  
s t r e s se s  to the change in momentum, 7 1, 72, and 7a are  s h e a r - s t r e s s  v iscos i ty  coefficients,  K > 0 is the 
magnetic susceptibil i ty of a paramagnet ,  and T = # 0hlK is the relaxation time of the magnetization. The su-  
pe r sc r ip t  d denotes the deviatoric par ts  of symmet r i c  dyads, and the supersc r ip t  a denotes an i t symmetr ic  
dyads. A dot above and to the right of a quantity denotes its total t ime derivative. 

Equations (1.1)-(1.4) form a closed sys tem of equations describing the motion of an isotropic homo-  
geneous magnetizable liquid and take account of the internal rotation of the par t ic les  and the phenomenon 
of magnetic relaxation. 

2. We assume that a magnetizable liquid with internal rotation of par t ic les  is contained in an in- 
finitely long cyl inder  of radius R. A magnetic field of constant intensity h 0 is applied perpendicular  to the 
axis of the cyl inder  and rotated with a constant angular velocity %. 

We solve the problem in cylindrical  coordinates r, 0, z rotating with an angular velocity equal to that 
of the magnetic field. 

In solving the problem we neglect  the change in magnetic and electr ic  fields connected with the mo-  
tion of the magnetizable liquid. Therefore ,  the components of the magnetic field both for  the region oc-  
cupied by the liquid and the region f ree  of liquid have the form 

h~ ~---h ocos0, h0 ---- --ho sin 0, h ~ = 0  (2.1) 

The magnetic field (2.1) tends to move fe r romagnet ic  par t ic les  in the direct ion of rotation. Because 
of viscous res i s tance  in the liquid surrounding the par t ic les  their  rotational motion produces a phase dif- 
ference 6 between the direct ion of the field and that of the intensity of magnetizat ion produced by the field. 

Therefore,  we have 

i m r = m  ocos(0 + 6 ) ,  m 0 = - - m o ~ i n ( 0 - ] - 6 ) ,  m z ~ 0  (2.2) 

Here m 0 is the intensity of magnetization.  

The boundary conditions are  determined by finite values of motion velocity and of velocity of internal 
rotat ion around the axis of the cylinder,  the adhesion of the liquid to the cyl inder  wall, and the absence of 
internal  rotat ion at the surface  of the cyl inder  

v ( 0 ) = # o o ,  to(0)=#oo, v ( R ) = - - R t o o ,  to ( R )  = - -  o)o ( 2 . 3 )  

Stationary flow under these conditions is descr ibed by a solution of Eqs. (1.1)-(1.3) of the form 

vo = v ( r ) ,  co z=co( r ) ,  m o = m  o(r), 6 = 6  (r) 

p ~--- p (r), vr ---~ vz ~-~ (or -~ co0 -= 0 (2.4) 

F rom (1.1)-(1.3) we find the following relat ions for determining v, w, mr,  m0,  and p: 
_ _  d p  pv  2 ~.  I d (rv) . . . .  2%~o = A, - -  = - -  -4- 2pvo~o + ptoo~r 

r d r  d r  r 

T* ~;-" ~7-r i '  d {r-dT-r ]d~ ~ ~_ 2%( i~ d(rV)dr 20))-~- M =  0 (2.5) 
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M = ~to(m~ho--  moh~), ~* = ~2 ~- ~ ,  ~(* = '(3 ~- 'r8 

K h o =  mo-~- T [ ~  \ ' - - 5 ~  -~ mr ) 

(2,6) 

Here A is an a rb i t r a ry  integration constant.  

By using (2.1) and (2.2) we find f rom (2.6) 

tg (5 ~ --,~o), m o ~ K h  o / (i ~- tg25) cos ~ (2.7) 

Henceforth we limit ourselves  to a considerat ion of liquids with small  viscosi ty  coefficients and to 
such an angular velocity of the rotating field that the angte of lag is appreciably smal le r  than unity (6 << 1). 
In this case, (2.7) and the torque equation (2.5) take the form 

6 ~ - -x (o ,  mo ~ -  Kho ,  M ~ -  ~toKho~6 (2.8) 

By using (2.8) Eqs. (2.5) can be put in the form 

, d , _ ( 2 . 9 )  
r dr 

i d (rv) A 2a~ V* ~Kho~t~ d ~  = a - Y  -~- b~*o), b = ~,.~-''W, ---- 

In Eqs. (2.9) the quantity k 2 is positive. This follows f rom the form of the thermodynamic  const ra in ts  
on the phenomenological coefficients [3]. 

Equations (2.9) and the boundary conditions (2.3) have the solution 

v=-r~o+-V- 

CO ~ k~ ~- b'~7*a * "~- B [0 (kr) - -  kR (k~ + b~'~*a *) 

t~ --- O) o (- k~ -I- b27.a, kR (k ~ -~ b~'~*~ *) . 

Here I 0 and 11 are  modified Bessel  functions of the f i rs t  kind. 

Thus it is possible to account qualitatively for  the rotation of a fer romagnet ic  liquid in a rotating mag-  
netic field [1] within the f ramework of the nonsymmetr ic  model of an e lectromagnet ic  liquid [3]. This model 
suffices because it takes account of the dissipation of e lec t romagnet ic - f ie ld  energy in relaxation p rocesses  
re la ted to the phenomena of polarizat ion and magnetizability.  

It is c lear  f rom (2.6) that the presence  of t e rms  containing the magnetization relaxation time leads to 
a difference in the directions of the magnetic field and the intensity of magnetization. This gives r ise  to a 
body torque (2.8) which induces an internal rotation of the par t ic les  in the liquid (2.5). 

As a consequence of the v iscos i ty  of the liquid the rotation of par t ic les  by the field causes  a drag of 
the liquid surrounding the par t ic les .  Thus local vor t ices  are  induced in the liquid. The presence  of "fr ic-  
tion" (a  3 40) between the internal rotation field co and the external rotation field ~7 • v ar is ing f rom the dif- 
ference in inert ial  proper t ies  of the liquid and par t ic les  produces nonsymmetr ic  s t r e s se s  (2.5) which set 
the liquid into macroscopic  m o t i o n -  into rotation (2.10). 

To explain the role of shear  s t r e s se s  in the appearance of macroscopic  motion of the liquid we set 
* =0 in (2.5). Then Eqs. (2.5) and the f i rs t  and third boundary conditions of {2.3) have the solution 

v ~- 0, co -~ x* (4x~ -~ x*) -1 (00 (2.12) 

in the s tat ionary re fe rence  f rame.  

It is  c lea r  f rom (2.12) that there is no macroscopic  motion in the liquid and that the internal rotation 
of the par t ic les  fo rms  a uniform field. Thus the macroscopic  motion of the liquid is essent ial ly  co~mected 
with the nonuniformity of the internal rotation field of the par t ic les ,  i.e.,  with the p resence  of shear  s t r e sses .  
It follows f rom (1.1) that only under this condition do a symmet r i c  s t r e s ses  appear in the liquid which con- 
tribute to the change in momentum and set the liquid in motion. 
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We note that if we rep lace  the magnetic susceptibi l i ty and the magnet ic- f ie ld  intensity in Eqs. (2.10) 
and {2.11) by the d ie lec t r ic  susceptibi l i ty and the e lec t r i c - f i e ld  intensity, respect ively ,  we obtain a solution 
of the problem of the rotat ion of a polar izable  liquid in a rotating e lec t r ic  f ield according to the model in [3]. 
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