MOTION OF A MAGNETIZABLE LIQUID IN A ROTATING
MAGNETIC FIELD

V. M. Suyazov

Moskowitz and Rosensweig [1] describe the drag of a magnetic liquid =~ a colloidal suspen~
sion of ferromagnetic single-domain particles in a liquid carrier — by a rotating magnetic
field. Various hydrodynamic models have been proposed [2, 3] to describe the macro~
scopic behavior of magnetic suspensions. In the model constructed in [2] it was assumed
that the intensity of magnetization is always directed along the field so that the body torque
is zero. Therefore, this model cannot account for the phenomenon under consideration.
We make a number of simplifying assumptions to discuss the steady laminar flow of an in~
compressible viscous magnetizable liquid with internal rotation of particles moving in an
infinitely long cylindrical container in a rotating magnetic field. The physical mechanism
setting the liquid in motion is discussed. The importance of unsymmetric stresses and
the phenomenon of relaxation of magnetization are emphasized. The solution obtained be-
low is also a solution of the problem of the rotation of a polarizable liquid in a rotating
electric field* according to the model in [3].

1. Neglecting electrical conductivity, polarizability, and cross effects, the equations [4] for an iso-
thermal incompressible liquid with constant physical properties consist of the momentum equation (1.1),

*While this paper was in press an article by V. M, Zaitsev and M. 1. Shliomis [4] on a similar problem was
published. The main conclusions of the present paper agree with those of [4]. The papers differ in their
approach to the description of the drag of a ferromagnetic suspension by a rotating field.

In [4] the problem is solved by using the equations of motion of an incompressible liquid having an
intrinsic angular momentum [5], taking account of the macroscopic external torgue per unit volume. In gen-
eral, this system of equations is not closed. For closure it is necessary first to know the magnitude of the
macroscopic external torque, and in [4] it is proposed to calculate this torgue by averaging the microscopic
moments acting on each individual particle; each specific case requires special considerations [4]. Sec-
ondly, it is necessary to use another equation, e.g., from the theory of paramagnetic relaxation, describing
the change of the intensity of magnetization with time.

Thus, the method used in [4] to solve the problem of the rotation of a ferromagnetic suspension is not
based on a pure hydrodynamic model which could be used to describe the mechanical behavior of such lig-
uids. Therefore, it is of interest to describe the phenomenon in question within the framework of a model
of a magnetizable liquid constructed by using the methods of the mechanics of continuous media [6]. The
present paper is concerned with finding just such a solution. The solution found shows the possibility of us-
ing the equations in [3} to account for the macroscopic behavior of ferromagnetic suspensions, The ex~
pressions for the electromagnetic body torque obtained in [3] and the equation describing the change of the
intensity of magnetization with time are rather general and are applicable to a broad class of physicome-
chanical phenomena. ’
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the equation for the internal rotation of the particles (1.2), the equation for the magnetization (1.3), and the
equations of the electrodynamics of a moving magnetizable medium (1.4):

pv' = — Vp + 20,V (V¥)° + a3V x (20 — V x v) + pom- Vh — pom'x ege — v x (pom- V) gge + pf (1.1)
p=—(89/0p™) -+ K 'u,m?, V-v=0
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11— K'm = pohy (M — @ x m}, =h —vxee (1.3)

Vxe+ 0uh/dt = — dp,mY 9t — Vx (pemxv), V.ge=0 (1.4)

Vxh— deefdt =0, V-ph= —V.pm

Here p is the mass density, v is the velocity, wis the angular velocities of the particles, p is the hy-
drostatic pressure, J is the average value of the moment of inertia of a unis mass, m is the intensity of
magnetization, e and h are the electric and magnetic field intensities, £, and u, are the permittivity and
permeability of vacuum, Vis the del operator, ¢ is the free energy, f is the body force, ¢, is a viscosity
coefficient, &4 is the coefficient of rotational viscosity characterizing the contribution of the unsymmetrical
stresses to the change in momentum, vy, y,, and y; are shear-stress viscosity coefficients, K > 0 is the
magnetic susceptibility of a paramagnet, and 7 = u4hK is the relaxation time of the magnetization. The su~
perscript d denotes the deviatoric parts of symmetric dyads, and the superscript ¢ denotes anitsymmetric
dyads. A dot above and to the right of a quantity denotes its total time derivative.

Equations (1.1)-(1.4) form a closed system of equations describing the motion of an isotropic homo-~
geneous magnetizable liquid and take account of the internal rotation of the particles and the phenomenon
of magnetic relaxation.

2. We assume that a magnetizable liquid with internal rotation of particles is contained in an in-
finitely long cylinder of radius R. A magnetic field of constant intensity h, is applied perpendicular to the
axis of the eylinder and rotated with a constant angular velocity w.

We solve the problem in cylindrical coordinates r, 6, z rotating with an angular velocity equal to that
of the magnetic field.

In solving the problem we neglect the change in magnetic and electric fields connected with the mo-
tion of the magnetizable liquid. Therefore, the components of the magnetic field both for the region oc~
cupied by the liquid and the region free of liquid have the form

h, =hycos8, hy= —hysin®, b, =0 @.1)

The magnetic field (2.1) tends to move ferromagnetic particles in the direction of rotation. Because
of viscous resistance in the liquid surrounding the particles their rotational motion produces a phase dif-
ference 6 between the direction of the field and that of the intensity of magnetization produced by the field.
Therefore, we have .

‘m, = mg cos (8 -+ 8), my= —m, sin (0 + 8), m, =0 (2.2)
Here my is the intensity of magnetization.

The boundary conditions are determined by finite values of motion velocity and of velocity of internal
rotation around the axis of the cylinder, the adhesion of the liquid to the cylinder wall, and the absence of
internal rotation at the surface of the cylinder

V(0) == w0, ©(0)=w, V(R)=—Ro, o(R)=—a 2.3)
Stationary flow under these conditions is described by a solution of Egs. (1.1)-(1.3) of the form

v =1v(r), @,== (), Mmy=m(r) 8=125 (r)

p==p(r), V=0, =0, =0y=0 (2.4)
From (1.1)-(1.3) we find the following relations for determining v, w, my, mg, and p:
2
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M = po(m,he —_ meh,), a¥ = %y -+ &g, 7* =Ts 1+ Ts
0
Kh, = m, -+ 1:[_2;_ (-(;%l — mg) + mem] (2.6)

9
Khy = my -+ r[-ﬁ—( 2;9 —J—m,> — m,w]

Here A is an arbitrary integration constant.
By using (2.1) and (2.2) we find from (2.6)
tg 8§ = —10, my = Khy | (1 4 tg28) cos & 2.7)

Henceforth we limit ourselves to a consideration of liquids with small viscosity coefficients and to
such an angular velocity of the rotating field that the angle of lag is appreciably smaller than unity (6 < 1),
In this case, (2,7) and the torque equation (2.5) take the form

§ = —0, my = Kh,, M = p,Kh 2.8)
By using (2.8) Egs. (2.5) can be put in the form
Tt et ba=0, - tumlre (2.9)
1 d A 2
IR rbre, b=, @ = KR

In Egs. (2.9) the quantity k?is positive, This follows from the form of the thermodynamie constraints
on the phenomenological coefficients [3].

Equations (2.9) and the boundary conditions (2.3) have the solution

b= — oy - Eili(ll (hr) — 4 11 (kR)) 2.10)
2bo* . B 2o4p2y*
0= — e+ B (1o ) ~ T gy 1680
_ 2bo* 2otby* “1 2.11
B =00 (= prrrr = 1) (1o bR — g gy 12 (R0 @10

Here I and I, are modified Bessel functions of the first kind.

Thus it is possible to account qualitatively for the rotation of a ferromagnetic liquid in a rotating mag-
netic field [1] within the framework of the nonsymmetric model of an electromagnetic liquid [3]. This model
suffices because it takes account of the dissipation of electromagnetic-field energy in relaxation processes
related to the phenomena of polarization and magnetizability.

It is clear from (2.6) that the presence of terms containing the magnetization relaxation time leads to
a difference in the directions of the magnetic field and the intensity of magnetization. This gives rise to a
body torque (2.8) which induces an internal rotation of the particles in the liquid (2.5).

As a consequence of the viscosity of the liquid the rotation of particles by the field causes a drag of
the liquid surrounding the particles. Thus local vortices are induced in the liquid. The presence of "fric-
tion™ (&3=0) between the internal rotation field @ and the external rotation field V x v arising from the dif-
ference in inertial properties of the liquid and particles produces nonsymmetric stresses (2.5) which set
the liquid into macroscopic motion ~ into rotation (2.10),

To explain the role of shear stresses in the appearance of macroscopic motion of the liquid we set
y*=01in (2.5). Then Egs. (2.5) and the first and third boundary conditions of (2.3) have the solution
v =0, ® = 1% (4x, + %) 0, {2.12)
in the stationary reference frame.
It is clear from (2.12) that there is no macroscopic motion in the liquid and that the internal rotation
of the particles forms a uniform field. Thus the macroscopic motion of the liquid is essentially connected
with the nonuniformity of the internal rotation field of the particles, i.e., with the presence of shear stresses.

It follows from (1.1) that only under this condition do asymmetric stresses appear in the liquid which con-
tribute to the change in momentum and set the liquid in motion.
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We note that if we replace the magnetic susceptibility and the magnetic-field intensity in Egs. (2.10)

and (2.11) by the dielectric susceptibility and the electric~field intensity respectively, we obtain a solution
of the problem of the rotation of a polarizable liquid in a rotating electric field according to the model in{3].
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